- motor y sus partes
- caja de cambios
- historia
- marcas conocidas y todas las insignias
Motor:
parte sistemática de una máquina capaz de hacer funcionar el sistema, transformando algún tipo de energía (eléctrica, de combustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. Hay didtintos tipos de motor:
- Motores térmicos, cuando el trabajo se obtiene a partir de energía calórica.
- Motores de combustión interna, son motores térmicos en los cuales se produce una combustión del fluido del motor, transformando su energía química en energía térmica, a partir de la cual se obtiene energía mecánica. El fluido motor antes de iniciar la combustión es una mezcla de un comburente (como el aire) y un combustible, como los derivados del petróleo y gasolina, los del gas natural o los biocombustibles.
- Motores de combustión externa, son motores térmicos en los cuales se produce una combustión en un fluido distinto al fluido motor. El fluido motor alcanza un estado térmico de mayor fuerza posible de llevar es mediante la transmisión de energía a través de una pared.
- Motores eléctricos, cuando el trabajo se obtiene a partir de una corriente eléctrica.
CULATA: parte que contiene los de mas componentes como las valvulas, entre otros, recordemos que esta hecha de aluminio con aleacion de otros materiales, esta es una de las partes mas calientes del motor y muy principal
El multiple de admison: especie de tuberia por la cual pasa el carburante (gasolina-aire) y va hacia las valvulas por las cuales cuando se abren, el aire entra a la camara de combustion para ser quemado con la gasolina, esta pieza cuenta con un chicote el cual es controlado de tal forma con otras piezas como especie de cuerda de alambre para ser controlado con el pedal del acelerador
Multiple de escape: especie de tuberia por la cual es conducido y de una manera expulsado los gases de la gasolina y el aire quemados.
Filtro de aire: filtra y limpia el aire de impurezas como basuras pequeñas, este filtro es practicamente para que el aire que va a ser admitido este limpio y asi no entre basura a la camara de combustión.
Árbol de levas: tipo de tubo o engrane el cual tiene varios topes ( levas ) de forma triangular este es el que hace que se muevan los balancines para darle un movimiento a las valvulas
Polea de árbol de levas: Esta polea es la que esta enlasada con la del cigueñal con la banda de distribución para que tengan una cincronización y esten a tiempo tanto los pistones como las valvulas y estos no golpeen entre si, esta polea de árbol de levas tiene como dientes de engrane para acoplarce a la banda de distribución
Valvulas: metal el cual esta formado para tapar, hay de dos tipos:
Admisión: admite carburante a la camara de conbustion, esta para que no se fugue el aire tiene un movimiento recto en el cual baja para admitir y sube para cerrar, esto lo hace por que cuenta con un resorte y para que no se salga con seguros
Escape: esta sube para que se escapen los gases de la camara de conbustion y cierra para que al admitir no se escape nada
Inyectores: Los inyectores son los que se encargan de subministrar o inyectar el combustible ya sea gasolina ( esta es inyectada en chorro ) o el Diesel ( este es inyectado como mas gaseoso o en aerosol ) claro tienen sus diferencias, por ejemplo el motor a diesel no usa bujias. Estos estan sujetados y de cierto modo alineados con un tubo llamado flauta de inyectores.
Bujias: dan el chispazo para que explote el combustible y el aire que esta alojado en la camara de conbustion , estas se tiene que cambiar en la afinacion que se le debe de hacer a un auto cada seis meses, estas funcionan con el distribuidor, en el caso del motor a diesel no tiene bujias, el combustible se quema por que los pistones son mas grandes, por la fuerza y el gran calor que lleva ( debemos de recordar que para que explote el diesel se tiene que calentar no es igual que la gasolina).
Junta de aceite i anticongelante de la cabeza del motor: especie de placa hecha de varios materiales como el plastico la cual hace un mejor sellado entre la cabeza del motor y el bloque para evitar que pase el anticonjelante y el aceite a la camara de combustión.
Bloque: parte más grande del motor en la que estan incluidas varias piezas, en el cual vienen los cilindros.
Cigueñal: parte pesada que va en la parte baja del bloque antes del carter, este lo hacen girar las bielas con los pistones.
Bielas: metales los cuales van sujetados con un seguro o bulon a los pistones para que al subir y bajar le den el movimiento al cigueñal (estas ban sujetas al cigueñal a la ves que van sujetas a los pistones, estan con tornillos).
Pistones: pieza metalica cilindrica la cual sube y baja con las bielas para formar el ciclo otto ( admision, compresion, explosion y escape ) en el cual tiene 2 fases que es punto muerto superior ( cuando esta arriba el piston ) y punto muerto inferior ( cuando esta abajo el piston ) . De este hay de varios tipos como concavo, semi plano y plano, por lo regular el plano son de modificaciones para mejorar la compresion, aunque no a todos los motores les queda.
El piston cuenta con varias partes la falda del piston y los anills, tiene tres anillos, el de aceite, el anillo superior de compresión y el segundo anillo de compresión.
Cilindros: El numero de cilindros varia en cuanto 1,2,3,4,5,6,8,10,12 y su tamaño igual varia por ejemplo un motor de 6 en linea o 6 en v, un motor de 4 en linea, y su tamaño dependiendo del caballaje.
Camisas:
cavidades por donde pasa el liquido refrijerante ya sea agua o anticonjelante, esto es asi para enfriar el motor, de estas hay dos tipos de camisas secas las cuales estan de una forma cubierta y solo con un orificio y pasa por dentro de una forma individual, o de camisas humedas por las cuales estan de forma junta como se ve en la primera imajen y de la segunda imajen es de camisas secas
Bomba de aceite: se encarga de bombear el aceite para que pase por el motor, esta costa de una tipo elize que esta adentro de la bomba y por fuera una coladera chica para impedir el paso de las basuras grandes.
Filtro de aceite: limpia el aceite para evitar que este recorra el motor con basura, pero es dificil que el aceite se mantenga asi por que recordemos que pasa por todo el motor.
BOMBA DE AGUA:
bombea el liquido refrijerante para que este pueda recorrer el motor y asi mismo enfriarlo, esta en su interior tiene una pequeña elize la cual es la que inpulsa el liquido refrijerante.
Distribuidor: tiene las bobinas para que de este esten conectados los cables de las bujias y de los cables a las bujias para que pueda ser posible dar el chispazo para que queme el combustible y el aire que etan en la camara de combustión
alternador: mecanismo que tienen los motores de combustion interna que es capaz de generar energia electrica con energia mecanica , ademas de que mantiene cargada la bateria del automovil .
El bolante estatico o de cremallera: bolante el cual hace girar al cigueñal, este es parte de la marcha o el encendido, este bolante cuando gira hace que el cigueñal se mueba y asi empieza atravez de la banda de distribución empieza a moberse las valvulas y así empieza a funcionar todo y enciende el motor.
Motor de arranque: Esta tambien cuenta como parte del bloque del motor este es un motor pequeño que funciona con el voltaje de la bateria del auto, cuando se mete la llave y se gira este empieza a funcionar girando al bolante estatico o de cremallera y el bolante estatico al cigueñal para que encienda el motor
Filtro de gasolina:
En algunos modelos varia, por ejemplo el filtro de gasolina esta en el tanque de la gasolina, pero algunos lo traen en el motor , este es encargado de filtrar y limpiar la gasolina, de este hay varios tipos por ejemplo el filtro de alto flujo. Cuando se hace la afinacion este es lavado o cambiado
Como funciona un motor:
historia del motor
Más información en: http://www.slideshare.net/adriancalvo/principales-partes-de-un-motor i en http://www.taringa.net/posts/autos-motos/11594877/Las-partes-del-motor-de-conbustion-interna-y-como-funcionan.html
Caja de cambios:
Introducción
La caja de cambios es un elemento de transmisión que se interpone entre el motor y las ruedas para modificar el numero de revoluciones de las mismas e invertir el sentido de giro cuando las necesidades de la marcha así lo requieran. Actúa, por tanto, como transformador de velocidad y convertidor mecánico de par.
Si un motor de explosión transmitiera directamente el par a las ruedas, probablemente seria suficiente para que el vehículo se moviese en terreno llano. Pero al subir una pendiente, el par resistente aumentaría, entonces el motor no tendría suficiente fuerza para continuar a la misma velocidad, disminuyendo esta gradualmente, el motor perdería potencia y llegaría a pararse; para evitar esto y poder superar el par resistente, es necesario colocar un órgano que permita hacer variar el par motor, según las necesidades de la marcha. En resumen, con la caja de cambios se "disminuye" o "aumenta" la velocidad del vehículo y de igual forma se "aumenta" o "disminuye" la fuerza del vehículo.
Como el par motor se transmite a las ruedas y origina en ellas una fuerza de impulsión que vence las resistencia que se opone al movimiento, la potencia transmitida (Wf) debe ser igual, en todo momento, a la potencia absorbida en llanta; es decir:
Cm.- par desarrollado por el motor
Cr.- par resistente en las ruedas
n.- número de revoluciones en el motor
n1.- número de revoluciones en las ruedas
Si no existiera la caja de cambios el número de revoluciones del motor (n) se transmitiría íntegramente a la ruedas (n = n1), con lo cual el par a desarrollar por el motor (Cm) sería igual al par resistente en las ruedas (Cr).
Según esto si en algún momento el par resistente (Cr) aumentara, habría que aumentar igualmente la potencia del motor para mantener la igualdad Cr = Cm. En tal caso, se debería contar con un motor de una potencia exagerada, capaz de absorber en cualquier circunstancia los diferentes regímenes de carga que se originan en la ruedas durante un desplazamiento.
La caja de cambios, por tanto, se dispone en los vehículos para obtener, por medio de engranajes, el par motor necesario en las diferentes condiciones de marcha, aumentado el par de salida a cambio de reducir el número de revoluciones en las ruedas. Con la caja de cambios se logra mantener, dentro de unas condiciones óptimas, la potencia desarrollada por el motor.
Relación de transmisión (Rc)
Según la formula expresada anteriormente, los pares de transmisión son inversamente proporcionales al numero de revoluciones:
Por tanto, la relación (n/n1) es la desmultiplicación que hay que aplicar en la caja de cambios para obtener el aumento de par necesario en las ruedas, que esta en función de los diámetros de las ruedas dentadas que engranan entre sí o del número de dientes de las mismas.
Cálculo de velocidades para una caja de cambios
Para calcular las distintas relaciones de desmultiplicación que se deben acoplar en una caja de cambios, hay que establecer las mismas en función del par máximo transmitido por el motor, ya que dentro de este régimen es donde se obtiene la mayor fuerza de impulsión en las ruedas. Para ello, basta representar en un sistema de ejes coordenados las revoluciones máximas del motor, que están relacionadas directamente con la velocidad obtenida en las ruedas en función de su diámetro y la reducción efectuada en el puente.
Siendo "n" el número de revoluciones máximas del motor y "n1" el numero de revoluciones al cual se obtiene el par de transmisión máximo del motor (par motor máximo), dentro de ese régimen deben establecerse las sucesivas desmultiplicaciones en la caja de cambios. Entre estos dos limites (n y n1) se obtiene el régimen máximo y mínimo en cada desmultiplicación para un funcionamiento del motor a pleno rendimiento.
Cajas de cambio de engranajes paralelos
Esta caja de cambio es la mas utilizada en la actualidad para vehículos de serie, por su sencillo funcionamiento. Esta constituida por una serie de piñones de acero al carbono, que se obtienen por estampación en forja y sus dientes tallados en maquinas especiales, con un posterior tratamiento de temple y cementación para obtener la máxima dureza y resistencia al desgaste.
Estos piñones, acoplados en pares de transmisión, van montados sobre unos árboles paralelos que se apoyan sobre cojinetes en el interior de una carcasa, que suele ser de fundición gris o aluminio y sirve de alojamiento a los piñones y demás dispositivos de accionamiento, así como de recipiente para el aceite de lubricación de los mismos.
Los piñones, engranados en toma constante para cada par de transmisión, son de dientes helicoidales, que permiten un funcionamiento mas silencioso y una mayor superficie de contacto, con lo cual, al ser menor la presión que sobre ellos actúa, se reduce el desgaste en los mismos. Los números de dientes del piñón conductor y del conducido son primos entre sí, para repartir el desgaste por igual entre ellos y evitar vibraciones en su funcionamiento.
Ahora vamos hacer el calculo de una caja de cambios a partir de los datos reales que nos proporciona el fabricante:
Ejemplo: Peugeot 405 Mi16
Cilindrada (cc): 1998
Potencia (CV/rpm): 155/5600
Par máximo (mkgf): 19,3/3500
Neumáticos: 195/55 R14
Relación de transmisión
rt (1ª velocidad) = 13/38 = 0,342
rt (2ª velocidad) = 23/43 = 0,534
rt (3ª velocidad) = 25/32 = 0,781
rt (4ª velocidad) = 32/31 = 1.032
rt (5ª velocidad) = 37/28 = 1,321
rt (M.A: marcha atrás) = 12/40 = 0,30
ademas de la reducción provocada en la caja de cambios también tenemos que tener en cuenta que en el grupo diferencial hay una reducción, este dato también lo proporciona el fabricante.
rt (G.C: grupo piñón-corona diferencial) = 14/62 = 0,225
Nota: El fabricante nos puede proporcionar la relación de transmisión en forma de fracción (rt 1ª velocidad = 13/38) o directamente (rt 1ª velocidad = 0,342).
Ahora tenemos que calcular el numero de revoluciones que tenemos en las ruedas después de la reducción de la caja de cambios y grupo diferencial (rT). Para ello hay que multiplicar la relación de transmisión de cada velocidad de la caja de cambios por la relación que hay en el grupo diferencial:
rT (nª velocidad): es la relación de transmisión total, se calcula multiplicando la rt (caja cambios) x rt (diferencial).
Pmax: es la potencia máxima del motor a un numero de revoluciones determinado por el fabricante.
nº rpm a Pmax: se calcula multiplicando rT x nº rpm a potencia máxima.
Con estos datos ahora podemos calcular la velocidad a máxima potencia para cada marcha de la caja de cambios. Para calcular la velocidad necesitamos saber las medidas de los neumáticos y llanta, este dato también lo proporciona el fabricante. En este caso tenemos unas medidas de neumático195/55 R14.
Para calcular la velocidad necesitamos saber el diámetro de la rueda (Ø).
El diámetro de la rueda (Ø) es la suma del diámetro de la llanta mas el doble del perfil del neumático.
El diámetro de la llanta es 14", para pasarlo a milímetros (mm) tenemos que multiplicar: 14" x 25,4 mm = 355,6 mm.
El perfil del neumático es el 55% de 195 (195/55) = 107,2 mm
Por lo tanto diámetro de la rueda = diámetro de la llanta + el doble del perfil del neumático = 355,6 + (107,2 x 2) = 570,1 mm.
Ahora ya podemos calcular la velocidad (v) del vehículo a máxima potencia para cada marcha de la caja de cambios.
v = velocidad (km/h)
Pi = 3,14
Ø = diámetro de rueda (metros)
nc = nº rpm del motor
k = constante
Utilizando estas formulas tenemos:
v (1ª velocidad) = k x nc = 0,107 x 430,64 = 46,20 km/h
v (2ª velocidad) = k x nc = 0,107 x 672 = 71,90 km/h
v (3ª velocidad) = k x nc = 0,107 x 974,4 = 104,26 km/h
v (4ª velocidad) = k x nc = 0,107 x 1299,3 = 139,02 km/h
v (5ª velocidad) = k x nc = 0,107 x 1663,2 = 177,96 km/h
v (M.A) = k x nc = 0,107 x 371,2 = 39,71 km/h
Sabiendo que este motor ofrece la máxima potencia a 5600 rpm, podemos hacer el gráfico anterior sabiendo a que velocidad es conveniente actuar sobre la caja de cambios y escoger la velocidad adecuada.
El par motor al igual que la velocidad, también será transformado en la caja de cambios y grupo diferencial. Para calcularlo se utiliza también la relación de transmisión (rT).
Cm.- par desarrollado por el motor
Cr.- par resistente en las ruedas
n.- número de revoluciones en el motor
n1.- número de revoluciones en las ruedas
Con los datos que tenemos, para calcular el par en las ruedas podemos aplicar la siguiente formula:
Cr (1ª velocidad) = 19,3 mkg/ 0,0769 = 250,9 mkg
Cr (2ª velocidad) = 19,3 mkg/ 0,120 = 160.83 mkg
Cr (3ª velocidad) = 19,3 mkg/ 0,175 = 110,28 mkg
Cr (4ª velocidad) = 19,3 mkg/ 0,232 = 83,18 mkg
Cr (5ª velocidad) = 19,3 mkg/ 0,297 = 64,98 mkg
Cr (M.A.) = 19,3 mkg/ 0,0675 = 285,9 mkg
Te puedes descargar este archivo en formato PDF, donde se explica otra manera alternativa de hacer los calculos de la relación de transmisión de una caja de cambios.
Cajas de cambio manuales
El sistema de cambio de marchas manual ha evolucionado notablemente desde los primeros mecanismos de caja de cambios de marchas manuales sin dispositivos de sincronización hasta las actuales cajas de cambio sincronizadas de dos ejes.
Independientemente de la disposición transversal o longitudinal y delantera o trasera, las actuales cajas de cambios manuales son principalmente de dos tipos:
* De tres ejes: un eje primario recibe el par del motor a través del embrague y lo transmite a un eje intermediario. Éste a su vez lo transmite a un eje secundario de salida, coaxial con el eje primario, que acciona el grupo diferencial.
* De dos ejes: un eje primario recibe el par del motor y lo transmite de forma directa a uno secundario de salida de par que acciona el grupo diferencial.
En ambos tipos de cajas manuales los piñones utilizados actualmente en los ejes son de dentado helicoidal, el cual presenta la ventaja de que la transmisión de par se realiza a través de dos dientes simultáneamente en lugar de uno como ocurre con el dentado recto tradicional siendo además la longitud de engrane y la capacidad de carga mayor. Esta mayor suavidad en la transmisión de esfuerzo entre piñones se traduce en un menor ruido global de la caja de cambios. En la marcha atrás se pueden utilizar piñones de dentado recto ya que a pesar de soportar peor la carga su utilización es menor y además tienen un coste más reducido.
En la actualidad el engrane de las distintas marchas se realiza mediante dispositivos de sincronización o "sincronizadores" que igualan la velocidad periférica de los ejes con la velocidad interna de los piñones de forma que se consiga un perfecto engrane de la marcha sin ruido y sin peligro de posibles roturas de dentado. Es decir, las ruedas o piñones están permanentemente engranadas entre sí de forma que una gira loca sobre uno de los ejes que es el que tiene que engranar y la otra es solidaria en su movimiento al otro eje. El sincronizador tiene, por tanto, la función de un embrague de fricción progresivo entre el eje y el piñón que gira libremente sobre él. Los sincronizadores suelen ir dispuestos en cualquiera de los ejes de forma que el volumen total ocupado por la caja de cambios sea el más reducido posible. Existen varios tipos de sincronizadores de los cuales destacan: sincronizadores con cono y esfera de sincronización, sincronizadores con cono y cerrojo de sincronismo, sincronizadores con anillo elástico, etc.
El accionamiento de los sincronizadores se efectúa mediante un varillaje de cambio que actúa mediante horquillas sobre los sincronizadores desplazándolos axialmente a través del eje y embragando en cada momento la marcha correspondiente. Los dispositivos de accionamiento de las distintas marchas dependen del tipo de cambio y de la ubicación de la palanca de cambio.
A continuación se van a estudiar los dos tipos de cajas de cambios. La primera caja de cambios es una caja manual de tres ejes con disposición longitudinal de un vehículo de propulsión trasera. La segunda, es una caja manual de dos ejes con disposición transversal, de un vehículo con tracción delantera con tracción delantera por lo que el grupo cónico-diferencial va acoplado en la salida de la propia caja de cambios.
La situación de la caja de cambios en el vehículo dependera de la colocacion del motor y del tipo de transmisión ya sea está delantera o trasera.
Estas dos disposiciones de la caja de cambios en el vehículo son las mas utilizadas, aunque existe alguna mas, como la de motor delantero longitudinal y tracción a las ruedas delanteras.
Caja de cambios manual de tres ejes.
Este tipo de cajas es el más tradicional de los usados en los vehículos actuales y tiene la ventaja principal de que al transmitir el par a través de tres ejes, los esfuerzos en los piñones son menores, por lo que el diseño de éstos puede realizarse en materiales de calidad media.
En la figura inferior se muestra un corte longitudinal de una caja de cambios manual de cuatro velocidades dispuesta longitudinalmente. El par motor se transmite desde el cigüeñal del motor hasta la caja de cambios a través del embrague (Q). A la salida del embrague va conectado el eje primario (A) girando ambos de forma solidaria. De forma coaxial al eje primario, y apoyándose en éste a través de rodamiento de agujas, gira el eje secundario (M) transmitiendo el par desmultiplicado hacia el grupo cónico diferencial. La transmisión y desmultiplicación del par se realiza entre ambos ejes a través del eje intermediario (D).
El eje primario (A) del que forma parte el piñón de arrastre (B), que engrana en toma constante con el piñón (C) del árbol intermediario (D), en el que están labrados, además, los piñones (E, F y G), que por ello son solidarios del árbol intermediario (D). Con estos piñones engranan los piñones (H, I y J), montados locos sobre el árbol secundario (M), con interposición de cojinetes de agujas, de manera que giran libremente sobre el eje arrastrados por los respectivos pares del tren intermediario.
El eje primario recibe movimiento del motor, con interposición del embrague (Q) y el secundario da movimiento a la transmisión, diferencial y, por tanto, a las ruedas. Todos los ejes se apoyan en la carcasa del cambio por medio de cojinetes de bolas, haciéndolo la punta del eje secundario en el interior del piñón (B) del primario, con interposición de un cojinete de agujas.
Para transmitir el movimiento que llega desde el primario al árbol secundario, es necesario hacer solidario de este eje a cualquiera de los piñones montados locos sobre él. De esta manera, el giro se transmite desde el primario hasta el tren fijo o intermediario, por medio de los piñones de toma constante (B y C), obteniéndose el arrastre de los piñones del secundario engranados con ellos, que giran locos sobre este eje. Si cualquiera de ellos se hace solidario del eje, se obtendrá el giro de éste.
La toma de velocidad se consigue por medio de sincronizadores (O y M), compuestos esencialmente por un conjunto montado en un estriado sobre el eje secundario, pudiéndose desplazar lateralmente un cierto recorrido. En este desplazamiento sobre el estriado el sincronizador se acopla con los piñones que giran locos sobre el árbol secundario.
En la figura inferior se muestra el despiece de una caja de cambios de engranajes helicoidales, con sincronizadores, similar a la descrita anteriormente. El eje primario 5 forma en uno de sus extremos el piñón de toma constante (de dientes helicoidales). Sobre el eje se monta el cojinete de bolas 4, en el que apoya sobre la carcasa de la caja de cambios, mientras que la punta del eje se aloja en el casquillo de bronce 1, emplazado en el volante motor.
En el interior del piñón del primario se apoya, a su vez, el eje secundario 19, con interposición del cojinete de agujas 6. Por su otro extremo acopla en la carcasa de la caja de cambios por medio del cojinete de bolas 28. Sobre este eje se montan estriados los cubos sincronizadores, y "locos" los piñones. Así, el cubo sincronizador 10, perteneciente a tercera y cuarta velocidades, va estriado sobre el eje secundario, sobre el que permanece en posición por los anclajes que suponen las arandelas de fijación 9, 13 y 14. En su alojamiento interno se disponen los anillos sincronizadores 7 (uno a cada lado), cuyo dentado engrana en el interior de la corona desplazable del cubo sincronizador 10. Estos anillos acoplan interiormente, a su vez, en las superficies cónicas de los piñones del primario por un lado y del secundario 11 por otro.
Cuando la corona del cubo sincronizador 10 se desplaza lateralmente a uno u otro lado, se produce el engrane de su estriado interior, con el dentado de los anillos sincronizadores 7 y, posteriormente, con el piñón correspondiente en su dentado recto (si se desplaza a la izquierda, con el piñón del primario y a la derecha con el 11 del secundario). En esta acción, y antes de lograrse el engrane total, se produce un frotamiento del anillo sincronizador con el cono del piñón, que iguala las velocidades de ambos ejes, lo que resulta necesario para conseguir el engrane. Una vez logrado éste, el movimiento es transmitido desde el piñón al cubo sincronizador y de éste al eje secundario.
En el secundario se montan locos los piñones 15 (de segunda velocidad) y 26 (de primera velocidad), con los correspondientes anillos sincronizadores 17 y cubo sincronizador. Cada uno de los piñones del secundario engrana en toma constante con su correspondiente par del tren intermediario 20, quedando acoplados como se ve en la figura superior.
En el tren intermediario se dispone un piñón de dentado recto, que juntamente con el de reenvío 23 y el formado en el cubo sincronizador de primera y segunda velocidades, constituyen el dispositivo de marcha atrás.
Funcionamiento
Constituida una caja de cambios como se ha explicado, las distintas relaciones se obtienen por la combinación de los diferentes piñones, en consecuencia con sus dimensiones.
En las cajas de cambio de tres ejes, el sistema de engranajes de doble reducción es el utilizado generalmente en las cajas de cambio, pues resulta mas compacto y presenta la ventaja sustancial de tener alineados entre si los ejes de entrada y salida. Para la obtención de las distintas relaciones o velocidades, el conductor acciona una palanca de cambios, mediante la cual, se produce el desplazamiento de los distintos cubos de sincronización (sincronizadores), que engranan con los piñones que transmiten el movimiento.
En esta caja de cambios (figura superior) se produce una doble reducción cuando los piñones de "toma constante" (B y C) son de distintas dimensiones (nº de dientes). Por eso para calcular la reducción, tendremos utilizar la siguiente formula para la saber el valor de reducción. Por ejemplo en 1ª velocidad tendremos:
rt = relación de transmisión
B, C, G, J = nº de dientes de los respectivos piñones
1ª velocidad
El desplazamiento del sincronizador de 1ª/2ª (N) hacia la derecha, produce el enclavamiento del correspondiente piñón loco (I) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene la máxima reducción de giro, y por ello la mínima velocidad y el máximo par.
2ª velocidad
El desplazamiento del sincronizador de 1ª/2ª (N) hacia la izquierda, produce el enclavamiento del correspondiente piñón loco (J) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene una reducción de giro menor que en el caso anterior, por ello aumenta la velocidad y el par disminuye.
3ª velocidad
El desplazamiento del sincronizador de 3ª/4ª (O) hacia la derecha, produce el enclavamiento del correspondiente piñón loco (H) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene una reducción de giro menor que en el caso anterior, por ello aumenta la velocidad y el par disminuye.
4ª velocidad
El desplazamiento del sincronizador de 3ª/4ª (O) hacia la izquierda, produce el enclavamiento del correspondiente piñón de arrastre o toma constante (B) del eje primario, que se hace solidario con el eje secundario, sin intervención del eje intermediario en este caso. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose una conexión directa sin reducción de velocidad. En esta velocidad se obtiene una transmisión de giro sin reducción de la velocidad. La velocidad del motor es igual a la que sale de la caja de cambios, por ello aumenta la velocidad y el par disminuye.
Marcha atrás (M.A.)
Cuando se selecciona esta velocidad, se produce el desplazamiento del piñón de reenvio (T), empujado por un manguito. Al moverse el piñón de reenvio, engrana con otros dos piñones cuya particularidad es que tienen los dientes rectos en vez de inclinados como los demás piñones de la caja de cambios. Estos piñones pertenecen a los ejes intermediario y secundario respectivamente. Con esto se consigue una nueva relación, e invertir el giro del tren secundario con respecto al primario. La reducción de giro depende de los piñones situados en el eje intermediario y secundario por que el piñón de reenvio actúa únicamente como inversor de giro. La reducción de giro suele ser parecida a la de 1ª velocidad. Hay que reseñar que el piñón del eje secundario perteneciente a esta velocidad es solidario al eje, al contrario de lo que ocurre con los restantes de este mismo eje que son "locos".
En la caja de cambios explicada , se obtienen cuatro velocidades hacia adelante y una hacia atrás.
Sincronizadores
Las cajas de cambio desde hace muchos años utilizan para seleccionar las distintas velocidades unos dispositivos llamados: sincronizadores, cuya constitución hace que un dentado interno ha de engranar con el piñón loco del eje secundario correspondiente a la velocidad seleccionada. Para poder hacer el acoplamiento del sincronizador con el piñón correspondiente, se comprende que es necesario igualar las velocidades del eje secundario (con el que gira solidario el sincronizador) y del piñón a enclavar, que es arrastrado por el tren intermediario, que gira a su vez movido por el motor desde el primario.
Con el vehículo en movimiento, al activar el conductor la palanca del cambio para seleccionar una nueva relación, se produce de inmediato el desenclavamiento del piñón correspondiente a la velocidad con que se iba circulando, quedando la caja en posición de punto muerto. Esta operación es sencilla de lograr, puesto que solamente se requiere el desplazamiento de la corona del sincronizador, con el que se produce el desengrane del piñón. Sin embargo, para lograr un nuevo enclavamiento, resulta imprescindible igualar las velocidades de las piezas a engranar (piñón loco del secundario y eje), es decir, sincronizar su movimiento, pues de lo contrario, se producirían golpes en el dentado, que pueden llegar a ocasionar roturas y ruidos en la maniobra.
Como el eje secundario gira arrastrado por las ruedas en la posición de punto muerto de la caja, y el piñón loco es arrastrado desde el motor a través del primario y tren intermediario, para conseguir la sincronización se hace necesario el desembrague, mediante el cual, el eje primario queda en libertad sin ser arrastrado por el motor y su giro debido a la inercia puede ser sincronizado con el del eje secundario. Por esta causa, las maniobras del cambio de velocidad deben ser realizadas desembragando el motor, para volver a embragar progresivamente una vez lograda la selección de la nueva relación deseada.
En la figura inferior tenemos un sincronizador con "fiador de bola", donde puede verse el dentado exterior o auxiliar (1) del piñón loco del eje secundario (correspondiente a una velocidad cualquiera) y el cono macho (2) formado en el. El cubo deslizante (7) va montado sobre estrías sobre el eje secundario (8), pudiendose deslizarse en él un cierto recorrido, limitado por topes adecuados. La superficie externa del cubo está estriada también y recibe a la corona interna del manguito deslizante (3), que es mantenida centrada en la posición representada en la figura, por medio de un fiador de bola y muelle (6).
Para realizar una maniobra de cambio de velocidad, el conductor lleva la palanca a la posición deseada y, con esta acción, se produce el desplazamiento del manguito deslizante, que por medio del fiador de bola (6), desplaza consigo el cubo deslizante (7), cuya superficie cónica interna empieza a frotar contra el cono del piñón loco que, debido a ello, tiende a igualar su velocidad de giro con la del cubo sincronizador (que gira solidario con el eje secundario). Instantes después, al continuar desplazandose el manguito deslizante venciendo la acción del fiador, se produce el engrane de la misma con el dentado auxiliar del piñón loco sin ocasionar golpes ni ruidos en esta operación, dado que las velocidades de ambas piezas ya están sincronizadas. En estas condiciones, el piñón loco queda solidario del eje secundario, por lo que al producirse la acción de embragado, será arrastrado por el giro del motor con la relación seleccionada.
Caja de cambios manual de dos ejes
Este tipo de cajas de cambio ha tenido su desarrollo fundamentalmente para disposiciones de vehículos con tracción delantera. Estas cajas de cambio sólo poseen dos ejes de forma que no poseen un tercer eje intermediario. El eje primario obtiene su giro directamente del motor y lo transmite a un eje secundario que a su vez acciona el conjunto diferencial. De esta forma el tamaño del conjunto caja-diferencial se reduce quedando todo bajo un conjunto compacto. La transmisión de todo el par mediante sólo dos ejes obliga a los piñones a soportar cargas mucho más elevadas que sus homólogos de las cajas de tres ejes. Por tanto es preciso emplear materiales de mayor calidad en la fabricación de estos piñones.
En las figuras siguientes tenemos el despiece de una caja de cambios de dos ejes de 5 velocidades.
En los esquemas siguientes se muestra un corte longitudinal de una caja de cambios manual de cinco velocidades de dos ejes con disposición transversal.
El eje primario (1) va apoyado sobre la carcasa sobre dos rodamientos y contiene los piñones solidarios (6, 7, 8, 9, 10) y el piñón loco (11) de 5ª velocidad, con su propio sincronizador (12).
El eje secundario (15) está apoyado también en la carcasa mediante dos rodamientos y contiene los piñones locos (14, 17, 18, 20) y el piñón solidario (13) de 5ª velocidad. En el extremo del eje secundario va labrado el piñón de ataque a la corona del diferencial (5). Este eje cuenta con dos sincronizadores el de 1ª/2ª (19) y el de 3ª/4ª (16), este sincronizador sirve ademas como piñón solidario para la marcha atrás.
Los sincronizadores están dispuestos de tal forma que: un primer sincronizador (16) entre los piñones locos de 3ª y 4ª en el eje secundario (15), otro sincronizador (12) exclusivo para la 5ª marcha en el eje primario y un tercer sincronizador (19) en el eje secundario entre los piñones locos de 1ª y 2ª marcha.
Observar que el sincronizador (16) de la 3ª y 4ª tiene en su corona desplazable un dentado recto exterior que hace la función de piñón de marcha atrás. La marcha atrás se acciona al conectar el piñón de marcha atrás (9) del eje primario con la corona del sincronizador mediante un piñón auxiliar (12) de marcha atrás que invierte el giro del eje secundario.
Todos los pares de piñones están permanentemente engranados de forma que sólo el piñón loco de la marcha seleccionada se mueve solidario a su eje a través de su correspondiente sincronizador. Mientras los demás piñones locos giran libremente arrastrados por sus homólogos solidarios del otro eje.
Funcionamiento
*El funcionamiento de las distintas marchas es el siguiente:
1ª velocidad
El desplazamiento del sincronizador de 1ª/2ª (19) hacia la derecha, produce el enclavamiento del correspondiente piñón loco (20) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene la máxima reducción de giro, y por ello la mínima velocidad y el máximo par.
2ª velocidad
El desplazamiento del sincronizador de 1ª/2ª (19) hacia la izquierda, produce el enclavamiento del correspondiente piñón loco (18) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene una reducción de giro menor que en el caso anterior, por ello aumenta la velocidad y el par disminuye.
3ª velocidad
El desplazamiento del sincronizador de 3ª/4ª (16) hacia la derecha, produce el enclavamiento del correspondiente piñón loco (17) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene una reducción de giro menor que en el caso anterior, por ello aumenta la velocidad y el par disminuye.
4 ª velocidad
El desplazamiento del sincronizador de 3ª/4ª (16) hacia la izquierda, produce el enclavamiento del correspondiente piñón loco (14) del eje secundario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene una reducción de giro menor que en el caso anterior, por ello aumenta la velocidad y el par disminuye.
5ª velocidad
El desplazamiento del sincronizador de 5ª (12) hacia la derecha, produce el enclavamiento del correspondiente piñón loco (14) del eje primario, que se hace solidario de este eje. Con ello, el giro es transmitido desde el eje primario como muestra la figura inferior, obteniendose la oportuna reducción. En esta velocidad se obtiene una reducción de giro menor que en el caso anterior, por ello aumenta la velocidad y el par disminuye.
Marcha atrás (M.A.)
Cuando se selecciona esta velocidad, se produce el desplazamiento del piñón de reenvio, empujado por un manguito. Al moverse el piñón de reenvio, engrana con otros dos piñones, uno unido a eje primario (9) y el otro lo forma el sincronizador de 3ª/4ª cuya corona externa tiene labrados unos dientes rectos. Una particularidad de los piñones que intervienen en la marcha atrás, es que tienen los dientes rectos en vez de inclinados como los demás piñones de la caja de cambios.
Con este mecanismo se consigue una nueva relación, e invertir el giro del tren secundario con respecto al primario. La reducción de giro depende de los piñones situados en el eje primario y secundario por que el piñón de reenvio actúa únicamente como inversor de giro. La reducción de giro suele ser parecida a la de 1ª velocidad.
Se comprueba en las siguientes figuras como hay cajas de cambios diseñadas de tal manera que se sitúan los sincronizadores tanto en el eje primario (2) como en el secundario (12) y los piñones no son todos solidarios en un eje y locos en el otro, sino que se distribuyen en los dos ejes por igual. En el eje primario tenemos como piñones solidarios (6, 7 y 8) y como locos (3 y 5). En el eje secundario tenemos como piñones solidarios (12 y 14) y como locos (9 y 11). La marcha atrás se hace intercalando un piñón de reenvio entre el piñón solidario del eje primario (7) y la corona externa dentada del sincronizador de 1ª/2ª. Se aprecian claramente los dientes rectos de los piñones que intervienen en la marcha atrás.
En la figura inferior puede verse el sistema de mando de la caja de cambios anterior. La palanca de cambios (8) transmite un movimiento en cruz de izquierda a derecha y hacia adelante o hacia atrás indistintamente, que es interpretado por el eje/palanca (6) transformando dicho movimiento en uno de giro en semicírculo y otro movimiento en forma vertical de arriba a abajo o al revés. El Eje/palanca con su movimiento acciona una de las barras desplazables (4) que tienen acopladas de forma solidaria las horquillas (7) que a su ves mueven los sincronizadores (1 y 2) y el piñón de reenvio (3). Las barras desplazables (4) están dotadas cada una de ellas de unas escotaduras (5), en las que puede alojarse una bola presionada por un muelle. Estas escotaduras sirven para fijar las barras en una posición concreta para impedir el desplazamiento de la mismas, como consecuencia de las vibraciones o sacudidas que se producen con la marcha del vehículo.Esto evita que se pueda salir una marcha una vez que esta engranada.
Caja de cambios manual actualizada
El cambio que vamos a estudiar ahora es una versión extremadamente ligera, dotada de dos árboles y 5 velocidades. Los componentes de la carcasa están fabricados en magnesio. El cambio puede transmitir pares de hasta 200 Nm. Este cambio se puede emplear en combinación con una gran cantidad de motorizaciones. Las relaciones de las marchas, los piñones y la relación de transmisión del eje han sido configurados por ello de modo flexible.
Todos los piñones móviles (locos) están alojados en cojinetes de agujas y están repartidos en los árboles primario y secundario. Los piñones de 1ª y 2ª marcha se conectan sobre el árbol secundario; los de 3ª, 4ª y 5ª marchas se conectan sobre el árbol primario.
El piñón de marcha atrás (16) tiene dentado recto. La inversión del sentido de giro sobre el árbol secundario se realiza con ayuda de un piñón intermediario (15), alojado con un eje aparte en la carcasa del cambio, que se conecta entre los árboles primario y secundario. Sobre el secundario se conecta sobre la corona dentada, tallada en el exterior del sincronizador de 1ª y 2ª.
La transmisión del par de giro hacia el diferencial se realiza a través del piñón de ataque del árbol secundario contra la corona dentada del grupo diferencial.
z1.- nª de diente piñones del primario
rt.- relación de transmisión (z2/z1)
Carcasa
La carcasa del cambio consta de 2 piezas de magnesio (carcasa del cambio y carcasa de embrague).
Con una tapa específica se cierra la carcasa del cambio hacia fuera. Los componentes de la carcasa son de magnesio, para conseguir un conjunto mas ligero.
Árbol primario
El árbol primario está diseñado con el conjunto clásico de cojinetes fijo/móvil.
Está alojado:
* mediante un cojinete de rodillos cilíndricos (móvil) en la carcasa del embrague,
* mediante un rodamiento radial rígido (fijo) en una unidad de cojinetes, dentro de la carcasa del cambio.
Para reducir las masas se ha dotado el árbol primario de un taladro que lo atraviesa casi por completo.
El dentado para la 1ª, 2ª y marcha atrás forma parte del árbol primario. El cojinete de agujas para la 5ª marcha se aloja en un casquillo por el lado del árbol. Los cojinetes de agujas para los piñones de 3ª y 4ª marchas funcionan directamente sobre el árbol primario.
Los sincronizadores de 3ª y 4ª marchas y 5 marcha van engranados mediante un dentado fino. Se mantienen en posición por medio de seguros.
Árbol secundario
También el árbol secundario está diseñado de acuerdo a los cojinetes clásicos fijo/móvil.
Igual que el árbol primario, está alojado:
* mediante un cojinete de rodillos cilíndricos (móvil) en la carcasa del embrague
* por medio de un rodamiento radial rígido de bolas (fijo), situado conjuntamente con el árbol primario en la unidad de cojinetes, en la carcasa del cambio.
Para reducir la masa se ha procedido a ahuecar el árbol secundario.
Los piñones de 3ª, 4ª y 5ª velocidad y el sincronizador para 1ª y 2ª velocidad están engranados por medio de un dentado fino. Se mantienen en posición por medio de seguros. En el árbol secundario se encuentran los piñones móviles (locos) de 1ª y 2ª velocidad, alojados en cojinetes de agujas.
Grupo diferencial
El grupo diferencia constituye una unidad compartida con el cambio de marchas. Se apoya en dos cojinetes de rodillos cónicos, alojados en las carcasas de cambio y embrague.
Los retenes (de diferente tamaño para los lados izquierdo y derecho) sellan la carcasa hacia fuera.
La corona está remachada fijamente a la caja de satélites y hermanada con el árbol secundario (reduce la sonoridad de los engranajes).
La rueda generatriz de impulsos para el velocímetro forma parte integrante de la caja de satélites.
Doble sincronización
La 1ª y 2ª velocidad tienen una doble sincronización. Para estos efectos se emplea un segundo anillo sincronizador (interior) con un anillo exterior.
La doble sincronización viene a mejorar el confort de los cambios al reducir de 3ª a 2ª velocidad y de 2ª y a 1ª velocidad.
Debido a que las superficies friccionantes cónicas equivalen casi al doble de lo habitual, la capacidad de rendimiento de la sincronización aumenta en un 50 %, aproximadamente, reduciéndose a su vez la fuerza necesaria para realizar el cambio, aproximadamente a la mitad. Flujo de las fuerzas en el cambio
El par del motor se recibe en el cambio a través del árbol primario. Según la marcha que esté conectada, el par se transmite a través de la pareja correspondiente de piñones hacia el árbol secundario y, desde éste, hacia la corona del grupo diferencial.
El par y el régimen actúan sobre las ruedas motrices en función de la marcha engranada.
Los rodamientos radiales rígidos de bolas no se montan directamente en la carcasa del cambio, sino que se instalan en un alojamiento por separado para cojinetes.
El paquete completo de los árboles primario y secundario con sus piñones se preensambla fuera de la carcasa del cambio, en el alojamiento de cojinetes, lo cual permite incorporarlo fácilmente en la carcasa del cambio.
Los rodamientos radiales rígidos se fijan en la posición prevista por medio de una arandela de geometría específica, que va soldada al alojamiento de cojinetes.
Los rodamientos radiales rígidos poseen retenes radiales propios por ambos lados, para mantener alejadas de los cojinetes las partículas de desgaste que acompañan al aceite del cambio.
Mando del cambio
Los movimientos de cambio se reciben por arriba en la caja. El eje de selección va guiado en la tapa. Para movimientos de selección se desplaza en dirección axial. Dos bolas, sometidas a fuerza de muelle, impiden que el eje de selección pueda ser extraído involuntariamente de la posición seleccionada.
Las horquillas para 1ª/2ª y 3ª/4ª velocidad se alojan en cojinetes de bolas de contacto oblicuo. Contribuyen a la suavidad de mando del cambio. La horquilla de 5ª marcha tiene un cojinete de deslizamiento.
Las horquillas y los patines de cambio van acoplados entre sí de forma no fija.
Al seleccionar una marcha, el eje de selección desplaza con su dedillo fijo el patín de cambio, el cual mueve entonces la horquilla.
Los sectores postizos de las horquillas se alojan en las gargantas de los manguitos de empuje correspondientes a la pareja de piñones en cuestión.
Indicador de la velocidad de marcha
La señal de velocidad que se envía al velocímetro se realiza sin sistemas mecánicos intermedios (como el cable o sirga utilizado en los cambios antiguos).
La información necesaria para la velocidad de marcha se capta en forma de régimen de revoluciones, directamente en la caja de satélites, empleando para ello el transmisor electrónico de velocidad de marcha.
La caja de satélites posee marcas de referencia para la exploración: son 7 segmentos realzados y 7 rebajados. El transmisor trabaja según el principio de Hall. La señal PWM (modulada en achura de los impulsos) se transmite al procesador combinado en el cuadro de instrumentos
Conmutador para luces de marcha atrás
El conmutador para las luces de marcha atrás va enroscado lateralmente en la carcasa del cambio.
Al engranar la marcha atrás, un plano de ataque en el patín de cambio para la marcha atrás acciona el conmutador con un recorrido específico. El circuito de corriente se cierra, encendiendose las luces de marcha atrás.
Caja de cambios de 6 velocidades
Como curiosidad y sin entrar en detalles, vamos a ver este tipo de caja de cambios, que se empieza a ver montada en vehículos de medias y altas prestaciones. El diseño de esta caja dispone de tres árboles de transmisión que permite un diseño muy compacto, que ocupa poco espacio.
El cambio manual de 6 marchas destaca por numerosas cualidades, siendo la mas significativa el buen aprovechamiento del par entregado por el motor, consecuencia de un excelente escalonamiento de las marchas.
Además, al disponer de 6 marchas se reduce el consumo, los niveles de contaminación y se disminuye el impacto medioambiental
En el ámbito tecnológico, la novedad principal del cambio es el uso de dos árboles secundarios. Dicha técnica permite obtener un conjunto mas compacto, para poder montarlo en vehículos con grupo motor propulsor transversal.
Todas las marchas, incluida la marcha atrás, están sincronizadas, por lo que la facilidad en la conexión está asegurada. Además, los engranajes son helicoidales, hecho que aumenta la resistencia y reduce la sonoridad.
El uso de cable de mando en la transmisión de los movimientos de la palanca hacia el cambio de marchas aporta una mayor suavidad en el manejo, mayor precisión en los movimientos y una reducción en la traslación de ruidos al habitáculo.
La facilidad de manejo del cambio se complementa con el accionamiento hidráulico del embrague.
El cambio manual con 6 marchas hacia delante y una hacia atrás, se monta junto con el motor de forma transversal. Existen dos versiones, una para vehículos con tracción delantera y otra para vehículos con tracción total, siendo el peso de 48,5 kg y de 68 kg respectivamente
En ambos casos el par de entrada máximo admisible es de 350 Nm valor suficiente para poder ser montado en motores de alta potencia y par.
La carcasa del embrague dispone de numerosos taladros útiles para acoplar el cambio a los motores de diferentes familias. De esta forma se compensa el ángulo de inclinación propia de cada motor. Existen diversas relaciones de cambio, según sea la motorización en la que se monte. Por esta razón es importante consultar las letras distintivas del cambio en las operaciones de reparación.
Estructura
Los elementos que forman la caja de cambios están alojados en el interior de dos carcasas de aluminio, la del "embrague" y la del "cambio".
Los componentes básicos de! cambio son:
* un árbol primario,
* dos árboles secundarios,
* un árbol para la marcha atrás,
* un diferencial y
* la timoneria necesaria para la selección y conexión de las marchas
La versión de tracción total dispone además de una "caja de reenvío", imprescindible para transmitir par de giro al eje trasero.
La utilización de dos arboles secundarios, técnica conocida como "flujo de fuerzas cruzado", permite repartir los piñones móviles de las marchas entre ambos árboles y reducir así la longitud total del cambio.
Cada árbol secundario tiene un piñón de ataque que engrana directamente con la corona del diferencial. Pero sólo transmite movimiento el árbol que tenga engranada una marcha. Todos los piñones tienen dientes helicoidales. Además todas las marchas están sincronizadas, incluida la marcha atrás.
Arbol primario
El primario, sujeto por la carcasa del embrague y la del cambio, está apoyado en ellas medíante rodamientos de rodillos cónicos En el árbol se han mecanizado dos dentados, el de la 2ª marcha (el mas próximo al embrague) y otro que es común para la 1ª y la marcha atrás.
Sobre el árbol se monta un piñón doble, los cuales quedan solidarios. Dicho piñón doble incluye dos dentados, uno para la 6ª y 4ª marchas y otro para la 3ª. En su extremo opuesto al embrague se monta al piñón para la 5ª. Una vez montado, también gira solidario con el árbol.
Arboles secundario
Esta caja de cambio manual tiene dos secundarios: el "árbol secundario I" y el "árbol secundario II". Ambos gravitan en la carcasa del cambio y en la del embrague medíante rodamientos de rodillos cónicos.
En el "secundarlo I" se montan los piñones de la primera hasta la 4ª marcha, mientras que en el "secundarlo II" dispone los piñones de la 5ª, 6ª y marcha atrás
Todos los piñones de los secundarios giran libres sobre rodamientos de agujas. Cuando se engrana una marcha, el piñón correspondiente queda solidario al eje, transmitiendo el par a la corona del diferencial.
Todas las marchas están sincronizadas. Los sincronizadores de todas las marchas están repartidos entre los dos secundarios. Debe destacarse la sincronización doble de la 1º y 2º y 3ª el resto son sincronizadores simples.
El árbol "secundario II" tiene la característica de las zonas ocupadas por los piñones de la 4ª, 1ª y 2ª marcha. Gracias a una arandela derivadora de aceite, el árbol hueco y los tres taladros se logra un correcto engrase de los rodamientos de agujas de los piñones
Otros componentes internos
Eje de marcha atrás
La inversión de giro del secundario se logra mediante e! eje de la marcha atrás, al cual están fijados dos piñones, uno en permanente contacto con el primario y otro con el secundario.
El eje se apoya en la carcasa del cambio y en la del embrague por medio de rodillos de aguja
Diferencial
Descansa en dos rodamientos de rodillos cónicos, uno en la carcasa del embrague y el otro en la del cambio.
Tiene la función de compensar la diferencia de revoluciones de las ruedas motrices al tomar una curva. Está formado por una corona solidaria a la carcasa del diferencial, la cual al girar arrastra la carcasa donde se aloja el eje de los satélites. La actuación conjunta de los satélites y los planetarios, engranados entre sí, compensa la diferencia de giro de las ruedas motrices en curvas.
Con tal de mejorar la suavidad de marcha y reducir ruidos, se ha rectificado cónicamente la carcasa del diferencial en las salidas de los ejes abridados, para alojar un anillo cónico cargado por un resorte, evitando así vibraciones no deseadas en los ejes abridados.
La carcasa del diferencial tiene mecanizados ocho huecos. Con ellos y un transmisor para el velocímetro se obtiene la señal idónea para el cálculo de la velocidad instantánea del vehículo por parte def cuadro de instrumentos.
Caja de reenvio
Los vehículos con tracción total incorporan una caja de reenvío, fijada a la carcasa del embrague, la cual no tiene despiece.
Tiene la función de transmitir un movimiento de rotación entre la carcasa del diferencial y el árbol cardán. Consta de un grupo cónico formado por un piñón de ataque y una corona: ambos giran sobre rodamientos de rodillos cónicos.
El funcionamiento es sencillo: un eje nervado une rígidamente la carcasa del diferencial con el piñón de ataque de la caja de reenvío, el cual a su vez engrana con la corona de la caja
de reenvío y transmite el giro a través del árbol cardán al eje trasero.
Un segundo eje nervado atraviesa la caja de reenvío por el interior, de forma que une un planetario con el eje abridado del palier delantero derecho.
- El primer coche se cree que se creo en China, la energia que lo propulsaba era el vapor.
- El primer coche presentado fue el año 1769 creado por Nicholas-Joseph Cugnot. Era un triciclo de 4500kg con roedas de madera y llantas de hierro.
- Al 1866 l’alemany Gottlieb Wilhelm Daimer va construir el primer cotxe que tenia un motor de combustió interna.
-Este
cotche
pesaba
2
toneladas.
-Fue presentado en una exposición de
paris al 1867, este proyecto fue la base de la nueva industria.
Carl Friederich Benz
- (1844-1929) mecanico que creó el primer coche utilitzable de combustión interna, al 1886.
-1893 creó un coche con 4 ruedes, este coche lo llamó Benz.
-Al
1899 creó el primer coche de carreras
Luis Renault
- (1877-1944) frances que creó un cotxe en el garaje de sus padres. Con sus hermanos Fernand y Marcel, crearon en 1899 la sociedad Hermanos Renault.
-En
1900, participó en los Jugos Olímpicos.
-En
1903 Louis fue el único propietario de la compañia, a la cual llamó Automóbiles Renault.
-En
1910 viatjó a los estados unidos para estudiar los métodos de produción de Henry Ford, para llevar la a Francia pero no lo consiguió.
-En
1928 Louis Renault montó su empresa con un
puesto que ocupó durante 20 años.
Henry Ford
- (1863 – 1947) hizó una nueva cadena de montatje que aprovechaba la división del trebajo y augmentó la cadena de produción, así ahorraban costes de fabricación.
- Más tarde crearon el primer coche que se va repartió por todo el mundo llamado Ford T.
- 1903 Henry Ford funda la Ford Motor Company , EEUU, donde inicia la primera série con el model A.
futuro
- Coche elèctric: vehiculo eléctrico impulsado por motores eléctricos. Estos coches no se llevan por que necesitan ser cargados con freqüència.
- Hidrogeno: Estos coches utilitzan hidrogeno mediante la combustión, se "quema" hidrogeno al motor. En la conversión de pila de combustible, el hidrogeno se convierte en electricidad a través de pilas de combustible que mueven motores eléctricos.
- Híbrido: vehiculo que puede funcionar con más de una fuente de energia. Normalmente se utilitza la electricidad i la combustió. La electricidad proviene de baterias y, de un motor de combustión interna que mueve un generador.
Los de las compañias automobilisticas:
Mercedes BMW
Ford
Audi
Chevrolet
Renault
Cadillac
Aston Martin
Skoda
Peugeot
Fiat
Citroën
Saab
Seat
volkswagen